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SA model is presented for approximating load-diffusion from axially loaded fibers embedded

in elastic matrices. The fundamental elastostatic solutions used are for a point force and a point

dilatation in either a fully-infinite or semi-infinite space. Tangential tractions across the fiber-matrix

interface are included explicitly in the analysis. The model is applied to the three-dimensional

analogs of Melan's first problem and Reissner's problem and comparisons are made with exact

results in the case of the former to help establish the validity of the model.

INTRODUCTION

" The ability to analyze load-transfer in fiber-matrix systems which are illustrative of those

that exist in fiber-reinforced materials is fundamental to the study of how such materials behave in

application. Our ability at present, however, to rigorously solve such problems in the realm of

three-dimensional elasticity is limited to a few isolated results involving infinite fibers bounded

along their entire length to fully-infinite matrices. ;'wo noteworthy examples are the load-diffusion

from an axially loaded fiber [I] and the load-absorption by a b oken fiber in a remotely stressed

medium [10]. A much more interesting class of fiber-matrix system involves fibers embedded in

semi-infinite half-spaces. This type of problem is pertinent to the study of how fiber-bridging in

the wake of crack advance serves to isolate the crack tip from applied far-field loadings and thus

increases the fracture toughness of a material. The analytic complexity of such problems, however,
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discourages any attempt at a rigorous solution. What is being proposed in this paper is a model for

approximating load-diffusion in these systems.

One such model has already been developed by Muki and Sternberg [1,2,3] and used to

study such problems as load-transfer to a half-space from a partially embedded axially loaded rod

[2] and load-absorption by a semi-infinite fiber in a remotely stressed, fully-infinite matrix [3].

Muki and Sternberg's model replaces the fiber-matrix system of the problem with an extended

matrix occupying the volume originally containing both the fiber and the matrix and possessing the

same elastic properties as the original matrix. This extended matrix is in turn reinforced by a

"fictitious stiffener" whose modulus of elasticity when taken in sum with that of the extended

matrix is equal to that of the original fiber. This stiffener is taken to be a one-dimensional elastic

continuum bonded to the extended matrix in such a way that the axial strain in the stiffener is equal

to the average extensional strain of the extended matrix in the volume occupied by and in the

direction of the original fiber. Poisson's effect in the stiffener, and therefore in the fiber, is not

taken into account. Finally, "bond-forces" are regarded as body forces uniformly distributed over

disks perpendicular to the axis of the fiber and the load carried by the original fiber is equated with

the sum of the stiffener load and the resultant load carried by the extended matrix in the bonded

region.

A variation of Muki and Sternberg's model was used by Pak in a study of flexure of

partially embedded fibers under lateral loads [4]. The concept of a "fictitious stiffener" replacing

the original fiber and treated as a one-dimensional elastic continuum was again employed. In this

case, however, lateral displacement of the stiffener was taken to equal lateral displacement in the

extended matrix along the centroidal axis of the original fiber and Bernoulli-Euler bending beam

theory was used to describe the behavior of the stiffener. Body-force field distributions

corresponding to laterally-loaded rigid disks embedded in the matrix along the axis of the fiber

were adopted as the "bond-forces."

In the method proposed here, the stress field in a matrix in which a loaded fiber is

embedded is approximated by the stress field in an identical matrix in which the fiber has been
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replaced by unknown distributions of point forces and point dilatations along the fiber's centroidal

axis. The fiber is considered separately as a one-dimensional elastic continuum whose stress and

deformation state is related to matrix quantities along the fiber-matrix interface. The unknown

distributions are then solved for by requiring that the fiber satisfy equilibrium and constitutive

relations. This necessitates the numerical solution of a pair of coupled integral equations. In

contrast to the model used by Muki and Sternberg, this approach treats the transfer of load between

the fiber and matrix in a manner which explicitly includes tangential tractions across the interface

and therefore affords one more flexibility in examining systems where interface conditions are an

issue. Furthermore, the fundamental elastostatic solutions in application in this model are that for a

point force and a point dilatation. These solutions are much less cumbersome than the disk of

uniform loading (or laterally-loaded rigid disk) required in Muki and Sternberg's model. These

factors make the method presented below attractive for modeling a variety of fiber-matrix systems

of interest to those studying fiber-reinforced materials.

1. LOAD-TRANSFER TO AN ELASTIC MEDIUM FROM AN INFINITE

AXIALLY LOADED FIBER

Perhaps the best way to present this model is to demonstrate its application with a simple

problem, in this case the three-dimensional analog of Melan's first problem from two-dimensional

elasticity. An infinite cylindrical fiber, with a circular cross-section of radius a, is ideally bonded

along its entire length to a fully-infinite matrix and subjected to a concentrated load F (see Fig. 1).

The model is used to solve for the resultant axial load carried by the fiber. A cylindrical coordinate

system is defined as shown in Fig. 1 with the z-axis coincident with the centroidai axis of the fiber

and the applied load at the origin in the negative z-direction. Both the fiber and the matrix are

homogeneous and isotropic, linear elastic solids with Young's modulus and Poisson's ratio taken

respectively to be Ef and vffor the fiber and Em and Vrm for the matrix.
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Consider first the fiber of the problem. In this model the fiber is approximated as an

axisymmetric elastic rod with a uniform axial stress Y. This means it is assumed that -0 = Er, Ez,

GO = ar, and 0, are functions of z only and shear strains are ignored. Under the rod theory

approximation, constitutive relations for the fiber reduce to

0 = Efe z + 2vf Or (1)

and

Ef E0 + VfEf PE - (l -2vf )(I +vf )Gr =0 (2)

The fiber, taken as a free body, is subject to a concentrated load F at z = 0 and to bonding

tractions acting at r = a between the fiber and the matrix. These bonding tractions, along with their

equivalent matrix stresses, are a distributed shear stress, t = tr'(a,z), and a self-equilibrating

"pressure", ar = (Y' a, z). Throughout the remainder of this paper, field quantities in the matrix

will be denoted by superscribed m's. The rod is in equilibrium if, for all z,

la 20 + 27azr dz' = F2sgn(z) (3)
f 20

where the signum function sgn(z) - z/Izj. This equation might of course appear in different forms

depending on the lower limit used in the integral of the shear stress distribution. As written here,

however, (3) reflects the natural symmetry of the problem. In what follows, (2) and (3) are taken

to be the governing equations. Utilizing (1), the governing equations contain three fiber quantities

which need to be related to the approximate elastic field in the matrix described below, namely E0,

cz, and (yr.

As already stated, the elastic field in the matrix acted upon by the loaded fiber is

approximated by the reaction in a fully-infinite elastic space due to a concentrated force F acting at

the origin in the negative z-direction along with distributions along the 7-axis of point forces and

point dilatations, p(z) and q(z) respectively, where the point force distribution must be self-

equilibrating. Papkovich stress functions, V and 4, will be used to express this approximate elastic
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field. In a cylindrical coordinate system with rotational symmetry the expressions for radial and

axial displacements are

u(r,z)] (4)E ar

and

w(r,z)= z (r,z)-(3-4v)W(r,z)+ a (r,z) (5)

Thus, using the Kelvin solution for a concentrated load in an infinite elastic space along with that

for a point dilatation [8], the approximate elastic field can be expressed as

1 1 ;[S;Vl(r, z) =7 S(1-v.) - f~~ + p( )]d

(6)

O(r,z) - Vp) p(r- I f -_ -

where p(r,z) - r2 + z 2 and 8(c) is the Kronecker delta. In this expression the point forces are of

strength p(z) and act in the negative z-direction while the point dilatations in expansion are of

magnitude 1 + Vm q(z). Using these stress functions, expressions for all field variables in the
Em

matrix can be derived in the form of infinite integrals of the unknown distributions multiplied by

some known difference kernel, e.g. in the form

Ez(r,z) = f{AI(r,z- )[F()+ p( )]+ A2 (r,z- )q( )}d (7)

where the kernel functions A1 and A2 are real analytic functions of z for r > 0 and so,

consequently, is Fm. For those matrix quantities which shall be used below in terms of the

Papkovich stress functions see the Appendix. For reasons discussed in the literature [1] it is

impossible to model the fiber as an elastic line (with a = 0) in this problem.
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The fiber quantities u and cr in equations (2) and (3) are set equal to the corresponding

matrix quantities at r = a so that

60 = lU'(a, z) (8)
a

and

Or = o( (a, z) (9)

where we have shown that each of these quantities is analytic and must, therefore, be continuous.

On the other hand, on physical grounds, and from (3), the axial fiber stress Y must certainly be

discontinuous. Then, assuming that Cr is continuous, it follows from (1) that Fz is discontinuous.

The difficulty is that the seemingly most natural expression for Ez, that given by

Ez = C'(a,z) (10)

in the form (7), can not be discontinuous and so is suitable for use only in equation (2). Some

alternative expression for cz in terms of matrix field quantities must be adopted for equation (3).

As an indication that some alternative expression for e, involving a discontinuity would not

be unreasonable, consider the following. Let JE be the average, over a disk of radius a centered on

the z-axis, of the strains in the matrix Ez (r,z - ) where quantities with a superscript asterisk are

due to a unit concentrated axial load at (r,z) = (0, ). Calculation leads to an expression of the form

E* = Csgn(z - + regular terms . (11)

Except in the range Iz - = O(a) this expression agrees rather closely with c*z (a, z - ) for the

same load. However, this expression is not suitable for the following reason. From (1) it follows

that the "jump" AEz in strain be related to the jump in az at z = by Ae z = I = -- (for
Ef ta 2Ef

the supposed unit load). The constant C in (11) does not meet this requirement. For lack of

compelling reasons for a particular choice the effective axial strain in the matrix for a unit axial load

at (0, ) was taken to be
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= ~t2~, sgn(z - -erf(L .J+ E*M (a,z - . (12)T7Ea *:f Il. )

A somewhat different expression will be used in the half-space problem to follow. There is

certainly nothing unique about the expression (12) which gives finally an expression for axial

strain to be used in equations (1) and (3). Final numerical results, which agree very well with those

in the literature, seem to indicate that such results are quite insensitive to the precise definition of

Ez •

Using the expressions established above to relate the unknown fiber quantities to the elastic

field given by (6), and non-dimensionalizing with a and F, the governing equations (2) and (3) can

be rewritten as a pair of coupled integral equations in terms of the unknown distributions p(z) and

q(z);

2fp()d + f[r 1(z-)p()+ F12(z-)q()]d = -Ill(z) (13)
0 -

f[I21(Z-p( )+I-'22(z-)q(Q)]d = -1'21(z) (14)

where the kernel functions Fa3 (c,13 = 1,2) are real analytic functions (see the Appendix). Note

that this system could be solved analytically using Fourier transform methods and the convolution

theorem. However, of concern here is the establishment of methodology for more complicated

load-diffusion problems.

The system (13) and (14) is first reduced to a set of discrete linear equations. Using the

symmetry of the distributions, p(z) even and q(z) odd, the infinite integrals can be rewritten in

semi-infinite form, though without difference kernels. Truncating infinite limits at appropriately

large values and approximating the integrals with a trapezoidal quadrature scheme, the two

equations are then enforced at the discrete quadrature points in accordance with the Nystrom

method [51. Though not truly a system of first kind integral equations, (13) and (14) unfortunately

retain some of the ill-posed behavior inherent in all such equations. This is dealt with by using
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singular value decomposition to solve the set of linear equations, filtering out small length scale

instabilities with some unavoidable degradation of the results for small z [6]. Under the

assumptions of this model, especially that the fiber behaves as an elastic rod and has axial strain

given by (12), one would not expect high accuracy near the applied load in any event

Axial load in the fiber is determined by equation (1) [or equivalently equation (3)].

Rewriting (1) in non-dimensional form with the now known distributions p(z) and q(z) gives

G(z)= A,(Z)+ f[A,(z- )p()+ A 2 (z- )q()]d (15)
Go

_F

where Qo - F 2 , A1 is discontinuous at z = 0, and A2 is a real analytic function (see the

Appendix). The bonding tractions across the fiber-matrix interface, 't and ar, can similarly be

determined. Comparison between the results obtained with this model and those from an exact

elastostatic solution developed by Muki and Sternberg [1] along with the results of their

approximate model are shown in Fig. 2 - 4. The results for y very closely approximate the exact

solution and can be shown to have the same asymptotic form in the highest order term as IzI - ,

i.e.

cY(z) + (lV.) EflI Vf (-2vf)() sn(z) + o(z2') .(16)CFO Em ( , E E (1 + v I-2f)

The ratio of Young's moduli between the fiber and matrix is seen to be much more of an influential

factor than either of the Poisson's ratios. A comparison of yr in Fig. 3 points to a shortcoming of

the model which gives a result that is incorrectly continuous, though it approaches the exact

solution asymptotically for large z. Fig. 4 shows that while the exact solution predicts a logarithmic

singularity in r at z = 0, the everywhere bounded approximate solution is quite accurate elsewhere.
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2. LOAD-TRANSFER TO AN ELASTIC HALF-SPACE FROM A SEMI-INFINITE

AXIALLY LOADED FIBER

Typically of greater interest in the study of fiber-reinforced materials are problems of load-

diffusion from fibers in semi-infinite half-spaces. The problem of this type solved here is the three-

dimensional analog of Reissner's problem from two-dimensional elasticity. A semi-infinite

cylindrical fiber, with a circular cross-section of radius a, is ideally bonded to a semi-infinite

matrix. The fiber is normal to the free-surface of the matrix and is subjected to a concentrated load

F away from the matrix (see Fig. 5). A cylindrical coordinate system is defined as shown in Fig. 5

with the z-axis coincident with the centroidal axis of the fiber and the matrix occupying the space

z > 0. Both the fiber and the matrix are homogeneous and isotropic, linear elastic solids with

Young's modulus and Poisson's ratio taken respectively to be Ef and vf for the fiber and Em and

vm for the matrix.

In applying the model to this problem the procedure established above is repeated.

Constitutive relations for the fiber under the rod theory approximation are still given by (1) and (2)

and the bonding tractions along the fiber, with their equivalent matrix stresses, are denoted in the

same way. The rod is in equilibrium if, for all z > 0,

z
ta 2 T + 21cafT dz' = F (17)

0

In what follows, (2) and (17) are taken to be the governing equations and e0, ez, and ar are once

again the fiber quantities which need to be related to the approximate elastic field in the matrix

described below.

The approximate elastic field due to a concentrated force F acting at the origin in the

negative z-direction along with distributions along the positive z-axis of point forces and point

dilatations, p(z) and q(z) respectively, can be expressed using the Mindlin solution for a

concentrated load in a semi-infinite elastic half-space along with that for a point dilatation [8], as
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81r(Vr) T{p(r,z +) + 34Vz + p(rz ) P

2n 0 p(r z+ p)rq(Q

(18)

-(rz) =(3 - 4v_m) 4(1- Vm)(1 - 2vm)log[z + + p(r,z +Q]+(~)=8nt(l - f P(r, z +

- p(r, z- }F() +4(t )]d- + p(r,z-)q

where it is recalled that p(r, z) r + z2 . The distributions have the same magnitude as before.

Using these stress functions results in matrix field variables of the form

E,(r,z) = {Bi(r,z, )[F8( )+ p( )] + B2(r,z, )q( )}d . (19)
0

While the kernels B1 and B2 are not difference kernels they are still real analytic functions of z and

for r > 0 and so, consequently, is Ez•

The fiber-matrix relations for £0 and Cyr that were established in (8) and (9) are still valid as

is that for axial strain, rz, that was established in (10) to be used in equation (2). Care is used in

choosing an expression for cz to be used in (17). Consider a unit concentrated axial load at (0, ). It

follows from fiber equilibrium and (1) that there must be a jump in axial strain, A£* = I
rra2 Ef

across the load. Recall that a superscribed asterisk denotes a quantity due to a unit concentrated

axial load. The expression given in (12) satisfies this condition, but following the asymmetric

nature of the problem the effective axial strain in the matrix was instead taken to be
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- H(z - e + Z (a,(20)

ItaEf

where H(z) is the Heaviside step function. Comparison with other results in the literature show

(20) to be an acceptable choice.

Using the expressions established above to relate the unknown fiber quantities to the elastic

field given by (18), and non-dimensionalizing with a and F, the governing equations (2) and (17)

can be rewritten as a pair of coupled integral equations in terms of the unknown distributions p(z)

and q(z);

z 7
fp( )d + rI1(z, )p( )+r E(Z, )q( )]d = -rI 1(z,O) (21)

0 o

f[Tl 2 1 (z, )p() +122( z , ) q ( )]d  = - II 21(z,0) (22)
0

where the kernel functions ll3-g (ct,p = 1,2) are real analytic functions (see the Appendix). These

equations are solved for discrete values of the distributions in the same way as before except that

the limits of integration are already semi-infinite. Note that, as previously alluded to, (21) and (22)

do not have difference kernels and could not, therefore, be solved using transform methods.

Axial load in the fiber is determined by equation (1) [or equivalently equation (17)].

Rewriting (1) in non-dimensional form with the now known distributions p(z) and q(z) gives

= Y (Z,0) + f[T_(z,.)p() + X2 (z, )q( )]d (23)
O 0

F
where ao = F-2, Zl(z, ) is discontinuous at -= (, and Z2 is a real analytic function (see the

Appendix). Results from (23) are compared with those from Muki and Steinberg's model [2] and

shown in Fig. 6.
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CONCLUDING REMARKS

Comparison with an exact solution for the three-dimensional analog of Melan's first

problem [I] shows that the fiber load-diffusion model gives good results for both axial load in the

fiber and tangential tractions on the fiber-matrix interface at distances from the applied load greater

than approximately one fiber radius. The discontinuous nature of the normal interface tractions,

however, is not adequately accounted for. To demonstrate the model's application to fiber load-

diffusion problems involving half-spaces the three-dimensional analog to Reissner's problem was

examined. The results were compared to those from Muki and Sternberg's approximation [2,3]

and found to be in agreement. It is hoped that the model will prove useful in the study of other

more complex fiber-matrix systems which more closely resemble those observed in actual fiber-

reinforced materials. In particular it is anticipated that the model will be useful in studying systems

with prescribed interface conditions other than ideal bonding.
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APPENDIX

Listed below are those matrix quantities that are needed for the implementation of the model

in this paper. They are given in terms of the Papkovich stress functions which in turn are given, in

terms of the unknown distributions p(z) and q(z), by equation (6) for the full-space problem and

equation (18) for the half-space problem.

-u (r,z) = + a [rV(r,z)+ 0(r,z)] (A1)
r E. ar

1+ V M[Za2 1 a
Em(r,z)= m Zj-z2W(rz)-2(1-2vm)- z(r,z)+ (r, z) (A2)

a2a

Om (r, z) = _[Nf(r,z) + ,(r,z)] - 2vm -z4f(r,z) (A3)z Z' z7T' (r,z') dz' = [z'V(r, z') +O(r,z') -2(1 - v )f - V(r,z')dz' (A4)

0 rz'=O 0o

00

Note that, as stated in the text, each of these quantities is a real analytic function of z for r > 0.

The three-dimensional analog of the Melan problem.

The kernel functions for the pair of coupled integral equations (13) and (14) are arrived at

by substituting (Al) - (A4) [with V and 0 given by (6)] into the governing equations (2) and (3)

using the fiber-matrix relations established in the body of the paper. To non-dimensionalize with a

and F the following substitutions are made: z --+ az, ; - a , Pa -+ ap, () 15(
a

F
p( ) -- - - p(), and q( ) -4 Fq( ). Letting pz E 1 + z2 , the kernel functions are

a

1711(z) erf(z) + z + CtI +z c .' ..z_- + (X2 -5 (A5)
Pz PZ Pz
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F12 (z) = C+4 (A6)
z z

r21(z) = a5 -T + (X6-- (A7)
Pz Pz

1 1
122(z a= + C8(Ms)

where

, =(I+ Vm) Ef 1+Vf(1-2Vm) (A)
Em 2(1 Vm)

3 Fv E

CC2 = 3 v LVf (I + V m)E (AlO)

aX3 = f +v)Ef (All)
Em

a4 = 3 (1+ Vm)E - 3vf (A12)

2 Em

_____ _ilr(-2vf)(l +vf)(1- 2Vm)

(X5 = (1 + Vm)[( ) 22vf l(1 -v) (A13)

0t6 = ( l vm ) I Em 2(1 -3( -v.)( /)(-V A 4

3vf(I+Vm )JEf + 3(1- 2vf)(l + Vf) (A14)

a7(1 - 2vf) I + Vf -(I + )Ef] (A15)

OC8 -3vf (I + V)-3(-2vf)(+vf) (A16)
Em

The kernel functions in the expression for axial load in the fiber (15) are

Al(z)=sgn(z)-erf(z)+3 1, z+ 32 ' (A17)
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1 1
i2(z)- 3 4(A18)

where

SXvm)E - vf(1-2Vm) (A19)

Em 2(l Vm)

P2=, _3 If-1( . (A20)
2(1- Vm) 2 E MJ

P33=Vf-(1 V+  (A21)
mEm

= °X4 3( 1 + vm) E - 3v . (A22)

2 E.

The three-dimensional analog of Reissner's problem.

The kernel functions for the pair of coupled integral equations (21) and (22) are arrived at

by substituting (A1) - (A4) [with q and 4 given by (18)] into the governing equations (2) and (17)

using the fiber-matrix relations established in the body of the paper. The same substitutions are

made to non-dimensionalize with a and F. The kernel functions are

+ (z, (A23)
4( Evm)

l-I2(, + 4( 1 lvm) f23 (z, ) (,)16z (A23)

-6 (A24)
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1-12 1 (Z' V (i + v. ) E f Q J+)j1 )(1-2vf) f22 (Z,

+ I+ vm ) Ef nZ A5
8 1 - vn (A25

rl-2(, J1-(i + Vm)L 4 (Z,0) 1±(1 + V) - 2vf)f25 (Z, )

+11+V..)Ef ' z (A26)

4 Em

where Di (z,)Q (i I ... .8) are continuous, analytic functions given below. Letting p 1 + (Z-

andp V1 +(z+ I2

-3Oz (z + ) 3(1 - 4v - 4z )(z +Q+6z

4(1 -4vm + 2 V2)(z+ )+ 4z 3(z - ) 4(1 vm)z;)(A7

+3 5 + 3A7

Q2(,~ -3Oz(z - -) 6z (z+ )+ 12vmZ -9(z - )

6 (I1 2vm)(3 -4vm)(Z + ) + 3(z - (I (- 2 vm)(z -)

-3 p p

+4(1 - vm)(1 - (vmz +t~) + (2 + (A28)

- 6z (z+ ) (3-4vm)z+ z- 2(l -vm) 2(l-VM)
-5 -3 p 3  (Z+ +W) (Z- +P)p

+4(1l-vm) (A 29)
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K24(z, -3Oz(z + 0) 12*(+ )-3+2vm .2-8vm 3 2(A0
T7T5 + 3 +7--7A30

_0 + 6z(z+ )+q 3+4vm- 3+ 1A1

K2 (z +6~ (A32)
pp 5,+-

_-6z4(z+Q (>4vm)(z- ) z- 4(1 -Vm)(1 -2vm)
5 T-3 (z + +~ (A33)

_ z~+ 3-4v 1(A4

The kernel functions in the expression for axial load in the fiber (23) are

Zj~, =H(z -)[I -erf(z - )]+ -r1+ Vm)L (Z;)+ Vf ' 22(i, ) (A35)
8 1 -vm)Em 4(l1-vm)

ZAZI= (+ Vm)'fQ4 (Z,0+) f2~5 (4,)(A6
4 Em 2

where £)j(z, ) (i = 1,2,4,5) are as defined above.
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Fig. 1I Infinite cylindrical fiber embedded in an infinite elastic matrix.
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0.0 1.0 2.0 3.0 4.0 5.0
z/a

Fig,. 2 - Load-diffusion results in the three-dimensional analog of Melan's first problem for the

model presented in this paper and Muki and Sternberg's exact and approximate formulations.
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0.0 1.0 2.0 3.0 4,0 50
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Fig. 3 - Normal stress across the fiber-matrix interface in the three-dimensional analog of Melan's
first problem for the model presented in this paper and the exact solution.
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Oo = /(e T 2)

0.20 L
-,M o d e l7 )
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0.0 1.0 2.0 3.0 4.0 5.0
z/a

Fig. 4 - Shear stress across the fiber-matrix interface in the three-dimensional analog of Melan's

first problem for the model presented in this paper and the exact solution.
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Traction Free Surface

Fig. 5 - Semi-infinite cylindrical fiber embedded in a semi-infinite elastic matrix.
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Fig. 6 - Load-diffusion results in the three-dimensional analog of Reissner's problem for the

model presented in this paper and the exact solution.
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